IPv4 Address Octets

Each octet in the IP address has a value ranging from 0 to 255

128	64	32	16	8	4	2	1
128	64	37	16	8	Δ	2	1
0	0	0	0	0	0	0	0
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

Converting First Octet to Binary

- Let's convert that 192.168.10.15 address to binary, starting with the first octet of 192.
- Write out the binary columns on a piece of paper to do this

128	64	32	16	8	4	2	1
1	1	0	0	0	0	0	0

- 192 128 = 64
- 64 64 = 0
- The first octet is 11000000 in binary
- 128 + 64 = 192

Converting Second Octet to Binary

The second octet of 192.168.10.15 is 168

- 168 128 = 40
- 40 − 64 doesn't go
- 40 32 = 8
- 8 16 doesn't go
- 8-8=0
- The second octet is 10101000 in binary
- 128 + 32 + 8 = 168

The first half of the IP address in binary notation is 11000000.10101000

Converting Decimal to Binary

- Go ahead and stop the video and work out the last 2 octets if you're new to converting IP addresses to binary
- You should be able to show the complete IP address 192.168.10.15 in binary notation
- 11000000.10101000.x.x
- I'll show you the answer on the next slide

Conversion Answer

192.168.10.15 = 11000000.10101000.00001010.00001111

128	64	32	16	8	4	2	1
1	1	0	0	0	0	0	0

128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	0

128	64	32	16	8	4	2	1
0	0	0	0	1	0	1	0

128	64	32	16	8	4	2	1
0	0	0	0	1	1	1	1

Subnet Masks

- To set the boundary between logical networks (subnets), the IP address is combined with a subnet mask
- You'll learn about the subnet mask in the next lecture

