IPv4 Address Octets

- Each octet in the IP address has a value ranging from 0 to 255

| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Converting First Octet to Binary

- Let's convert that 192.168.10.15 address to binary, starting with the first octet of 192.
- Write out the binary columns on a piece of paper to do this

128	64	32	16	8	4	2	1
1	1	0	0	0	0	0	0

- $192-128=64$
- $64-64=0$
- The first octet is 11000000 in binary
- $128+64=192$

Converting Second Octet to Binary

- The second octet of 192.168.10.15 is 168

128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	0

- $168-128=40$
- 40-64 doesn't go
- $40-32=8$
- $8-16$ doesn't go
- $8-8=0$
- The second octet is 10101000 in binary
- $128+32+8=168$
- The first half of the IP address in binary notation is 11000000.10101000

Converting Decimal to Binary

－Go ahead and stop the video and work out the last 2 octets if you＇re new to converting IP addresses to binary
－You should be able to show the complete IP address 192．168．10．15 in binary notation
－11000000．10101000．x．x
－I＇ll show you the answer on the next slide

Conversion Answer

- 192.168.10.15 $=11000000.10101000 .00001010 .00001111$

| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

Subnet Masks

- To set the boundary between logical networks (subnets), the IP address is combined with a subnet mask
- You'll learn about the subnet mask in the next lecture

