#### Metric

- A router will typically only learn routes to a particular destination from a single routing protocol
- When multiple routes to a destination are learned through a routing protocol, the router will install the path or paths with the best (lowest) metric into the routing table
- Different routing protocols use different methods to calculate the metric



### Metric

- For example in RIP, path A>B>C>D has a hop count of 3, path A>B>D has a hop count of 2, so A>B>D would be preferred
- In OSPF, if path A>B>C>D has a cost of 60, and path A>B>D has a cost of 100, then A>B>C>D would be used



### Administrative Distance

- If paths to the same destination are received from different routing protocols, their metrics cannot be compared
- For example, a RIP hop count of 5 cannot be compared to an OSPF cost of 60. The comparison would be meaningless because the routing protocols calculate the metric in completely different ways
- The router must use a different method to choose when routes to the same destination are received from different routing protocols
- The Administrative Distance (AD) is used for this



### Administrative Distance

- The Administrative Distance is a measure of how trusted the routing protocol is
- If routes to the same destination are received via different routing protocols, the protocol with the best (lowest) AD wins



## Default Administrative Distance

| Route Source        | Default AD |
|---------------------|------------|
| Connected Interface | 0          |
| Static Route        | 1          |
| External BGP        | 20         |
| EIGRP               | 90         |
| OSPF                | 110        |
| IS-IS               | 115        |
| RIP                 | 120        |



### Administrative Distance and Metric

- Administrative Distance is used to choose between multiple paths learned via different routing protocols
- Metric is used to choose between multiple paths learned via the same protocol
- The Administrative Distance is considered first to narrow the choice down to the single best routing protocol
- The Metric is then considered to choose the best path or paths which make it into the routing table



# Show ip route



```
R1#sh ip route
```

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP + replicated route, % - next hop override
```

# Connected interfaces have an AD of 0

Gateway of last resort is not set

```
10.0.0.0/8 is variably subnetted, 12 aonets, 2 masks

10.0.0.0/24 is directly connected, FastEthernet0/0

10.0.0.1/32 is directly connected, FastEthernet0/0

R 10.1.0.0/24 [120/1] via 10.0.0.2, 00:00:00, FastEthernet0/0

R 10.1.1.0/24 [120/2] via 10.0.0.2, 00:00:00, FastEthernet0/0
```

Administrative Distance

Metric

# Administrative Distance Example

- Example: A router receives multiple routes to the 10.10.10.0/24 network from both OSPF and RIP
- When paths to the same destination are received from multiple routing protocols, the Administrative Distance is considered first
- OSPF has a better AD than RIP so the RIP routes will be discarded

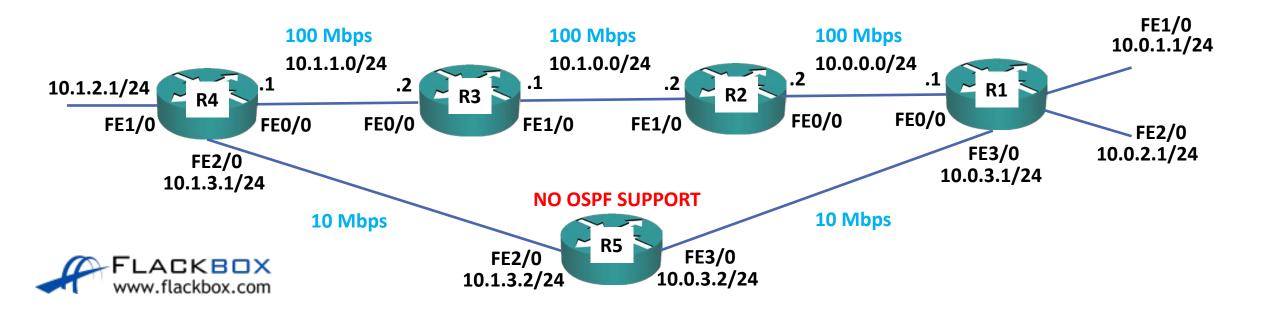


## Administrative Distance Example

- The router will then compare the routes received via OSPF and install the one with the lowest cost in the routing table
- If multiple equal cost paths are received via OSPF they will all be installed in the routing table and the router will load balance outbound traffic to the destination between them



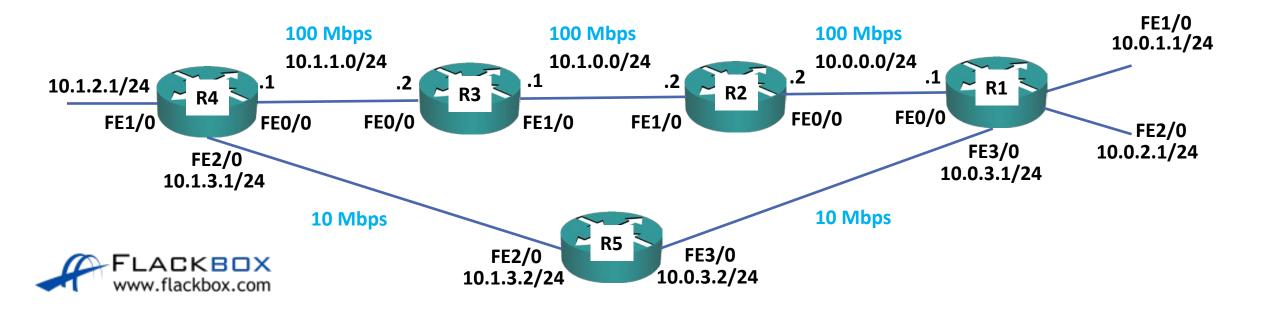
# Floating Static Routes


- If the best path to a destination is lost (for example because a link went down) it will be removed from the routing table and replaced with the next best route
- We might want to configure a static route as a backup for the route learned via a routing protocol
- A problem is that static routes have a default Administrative Distance of 1 which will always be preferred over routes learned via an IGP

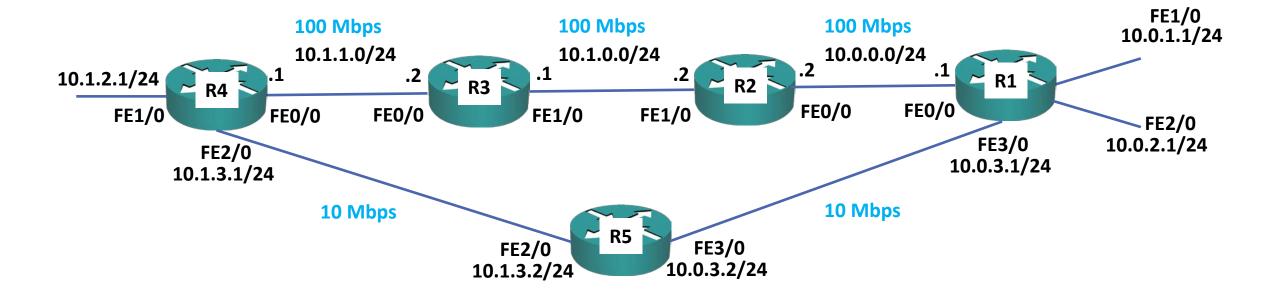


# Floating Static Routes – OSPF

- We can change the Administrative Distance of a static route to make it act as the backup (rather than the preferred) route
- Floating static route for OSPF example


R4(config)#ip route 10.0.1.0 255.255.255.0 10.1.3.2 115




## Floating Static Routes – Static Routes

Floating static routes can also be used where we are using purely static routing

```
ip route 10.0.1.0 255.255.255.0 10.1.1.2 ip route 10.0.1.0 255.255.255.0 10.1.3.2 5
```



## Lab



